Brucella: Science and Challenges

Steven Olsen, DVM, Ph.D. National Animal Disease Center

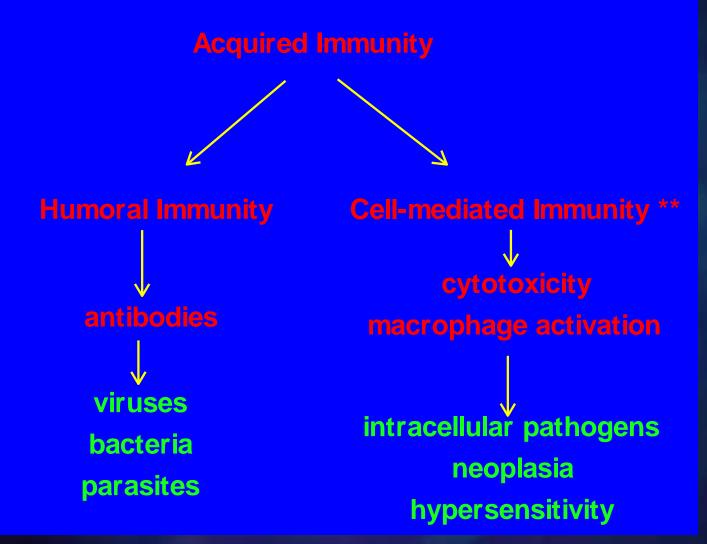
USDA Animal Health Facilities and Expertise

State-of-the-art: •ABSL2 and ABSL3 small and large animal facilities •BSL3 Agriculture large animal facility

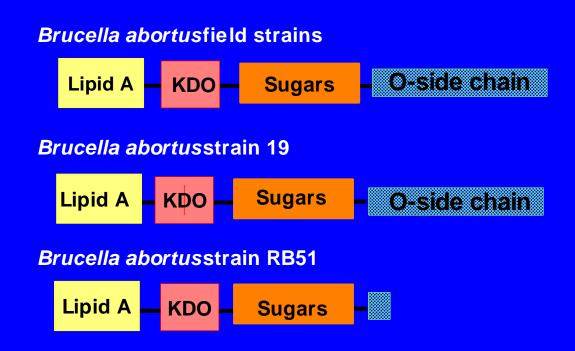
Animal care and facilities operations expertise that supports high-containment research in all major livestock and several wildlife species

Brucella

B. melitensis * B. Suis* B. abortus * ■ B. canis* dogs B. ovis sheep **B.** neotomae Marine Brucella* B. inoptimata B. microti voles Other *Brucella* * Zoonotic


Host Vaccine small ruminants Rev1 swine (cattle) none cattle (swine) RB51 or 19 none Rev1 wood rat none marine mammals none human none none Austria foxes, African bullfrogs

Distribution of Feral Swine in the US



GPS mapping at http://128.192.20.53/infsms/

Protective Immunity against Brucella: Primarily Cell-mediated

Lipopolysaccharide structure of virulent and vaccine strains

The O-side chain is the immunodominant antigen of *Brucella* for antibody responses

Variance in Immunologic Responses between Ruminants

¥

×

Brucella Vaccines

Vaccination alone will not eradicate brucellosis

- Vaccines are very good at reducing transmission and clinical disease; very poor at preventing seroconversion or transient infection after exposure
- Long-term protection related to cell-mediated immunity
- Antibodies relatively unimportant for efficacy
- Many vaccine strains can be pathogenic in humans or pregnant animals

Comparing susceptibility to Brucella challenge

Species N (Nonvaccinated)		Protection % protected (# aborted/infected / # challenged)				
		Abortion	Fetal/Mam. Infection	Maternal Infection		
Cattle	46	54% (21/46)	54% (21/46)	39 % (28/47) *		
Bison	50	16% (42/50)	12% (44/50)	0% (50/50)		

Assessment of Vaccine Efficacy by Experimental Challenge

Standardized method of vaccine evaluation
Cattle challenge model developed in 1940's
Evaluates all animals at most susceptible time (pregnant, end of second trimester) and receiving known infectious dose of virulent strain

Field efficacy usually higher (not all pregnant, not all exposed, not all receive infectious dose) but other factors (nutrition, stress) may influence efficacy

Efficacy of RB51 as a Calfhood Vaccine for Cattle

Age at Vaccination	Protection from abortion % protected (# aborted/ #challenged)			
	RB5 1	Strain 19	Control	
10 months	100% (0/20)	100% (0/6)	45% (6/11)	
7 months	100% (0/22)	100% (0/5)	63% (4/11)	
5-6 months	92% (2/25)	100% (0/4)	57% (6/14)	
3 months	87% (2/15)	100% (0/4)	50% (5/10)	
Overall	95% (4/82)	100% (0/19)	54% (21/46)	

Efficacy of RB51 in Bison Overall Data

Treatment	Ν	Protection % protected (# aborted/infected / # challenged)				
meannem	N	Abortion	Fetal/Mam. Infection	Maternal Infection		
Control	50	17% (47/56)	11% (50/56)	0% (56/56)		
Hand RB51	62	65% (28/80)*	[*] 53% (38/80)*	11% (66/74) *		
Single Ballistic	30	60% (12/30)*	57% (13/30) *	* 13 % (26/30) *		
Ballistic Sx	14	65% (5/14)*	43% (8/14)	14% (12/14)		
Hydrogel Bal.	19	32% (13/19)*	[*] 21% (15/19)	0% (19/19)		

* Significantly different (P < 0.05) than Control

Colonization Data

Log CFU/gm

	Parotid LN	Prescap LN	SM LN	Placentome	
Abortion					
Cattle (5) Bison (34)	2.4 ± 0.2 2.7 ± 0.1	1.4 ± 0.6 2.0 ± 0.2	1.2 ± 0.7 2.7 ± 0.7	6.3 ± 1.6 7.4 ± 0.3	
Full Term					
Cattle (3) Bison (7) Elk (27)	0 ± 0 1.7 ± 0.4 0.8 ± 0.2	0 ± 0 1.0 ± 0.4 0.3 ± 0.2	0 ± 0 0.9 ± 0.9 0.5 ± 0.2	0 ± 0 2.5 ± 1.2 1.7 ± 0.6	

IF RB51 A BOOSTER VACCINATION IS GIVEN

Treatment

Efficacy of RB51 in Bison

Rate of	abortion	or	infection
	aborted/infect		

meannem	N	Abortion	Uterine Infect	Mammary Infect	Maternal* Infect
Control	6	83%(5/6)	100%(6/6)	100%(6/6)	100%(6/6)
Hand RB51	6	67%(2/6)	66%(4/6)	83%(5/6)	83%(5/6)
Dart RB51	7	57%(4/7)	57%(4/7)	100 %(7/7)	94%(6/7)
Booster RB51	5	0%(0/5)	40%(2/5)	80%(4/5)	40%(2/5)

*Not mammary samples

Colonization Data

Treatmen		Log CFU/gm (no culture positive/total)					
	Parotid LN	Prescap LN	SM LN	Placentome			
Control	2.7 ± 0.3 (6/6)	1.7 ± 0.4 (5/6)	1.9 ± 0.5 (5/6) 7.6 ± 0.3 (6/6)			
Hand RB51	0.8 ± 0.4 (3/6)*	0 ± 0 (0/6)*	0.7 ± 0.5 (2)	2/6) 4.0 ± 1.8 (3/6)*			
Dart RB51	1.2 ± 0.5 (4/7)	0.3 ± 0.3 (1/7)*	* 0.9 ± 0.4 ((4/7) 4.5 ± 1.6 (4/7)			
Booster RB	51 0.8 ± 0.6 (2/5)* 0 ± 0 (0/5)*	0 ± 0 (0/	(5)* 1.7 ± 1.1 (2/5)*			

* (P<0.05) compared to control

Eradication of Brucellosis from the GYA

Species: Brucella abortus Hosts: Bison, elk and cattle Current status: Good vaccine and coverage for cattle; Moderately effective vaccine for bison; No vaccine currently for elk; Delivery issues Would need to combine vaccination with test and removal

Thoughts on "Natural Immunity"

- Intracellular environment and immunologic responses to Brucella complex
- Many redundancies and feed-back loops
- Brucella a excellent pathogen and stealthy
- I don't believe a single gene of the host regulates susceptibility/resistance

Thoughts on Seropositives

- No easy way to determine if "exposed" or infected
- We're evaluating new technology for detecting infection, but high risk approach (Aperio)
- How seropositives are handled should be based on control program objectives
 Contribution to herd immunity can be argued both pro and con

Opportunities and Constraints for Development of New Vaccine

Select Agent Act
Challenges in Developing a New Vaccine

"low hanging fruit" has been picked
laboratory animal models do not
replicate responses in natural hosts

Cost

Solve problems, not just study Brucella

Opportunities for New Vaccines

Nanoparticles

- DNA Vaccines
- Recombinants in which "stealthiness" has been diminished
- New Adjuvants

 Need good scientists/laboratories to collaborate as possible

Other Related Research

Sequencing Bison Genome with Texas A&M, ISU, and Univ. of Maryland Initiating transcriptomics studies Exploring Immunogenicity of a Nanoparticle Vaccine Evaluating effect of synthetic adjuvants on immune responses by bison and elk Collaboration with University of Wyoming scientists on efficacy of adult Vx in 2014

Some Final Thoughts

Vaccines and/or Delivery program may have to be engineered by species Addressing Select Agent concerns must be based on science and facts Development of new vaccines is a challenge but new technology may help Developing vaccine that prevents seroconversion will be very hard